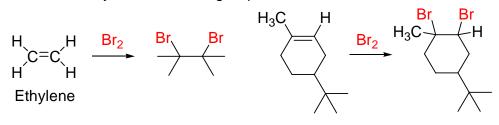
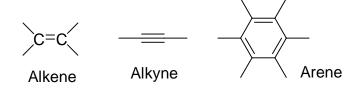
Chapter 2. The Nature of Organic Molecules

There are more than 27 million known organic molecules.


There are a few dozen families of compounds (functional groups) whose chemistry is reasonably predictable.

2.1 Functional Groups

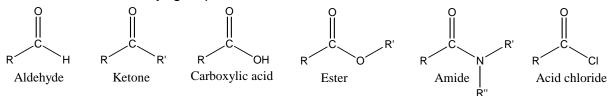

The structural features that make it possible to classify compounds by reactivity are called functional group.

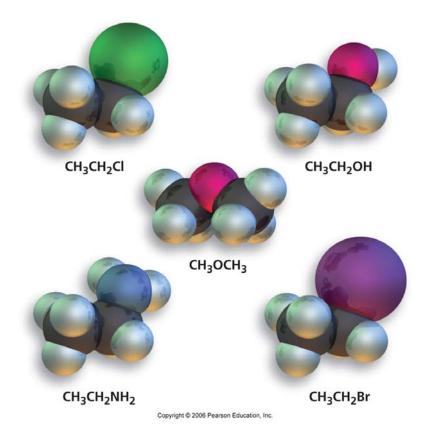
A functional group is a group of atoms within a larger molecule that has a characteristic chemical behavior.

The chemistry of every organic molecule, regardless of size and complexity, is determined by the functional groups it contains.

Menthene
A. Functional Groups with Carbon-Carbon Multiple Bonds

B. Functional Groups with Carbon Singly **Bonded to an Electronegative Atom**


Alkyl halides R-X, alcohols R-OH, ethers R-O-R', amines R-NR₂, thiols R-SH, and sulfides R-S-R


Electronegative atom: halogen (X), oxygen (O), nitrogen (N), or sulfur (S)

Bonds are polar, with the carbon atom bearing a partial positive charge (δ +) and the electronegative atom bearing a partial negative charge (δ -).

C. Functional Groups with a Carbon-Oxygen Double Bond (Carbonyl Groups) C=O

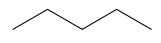
The chemistry of these compounds depends greatly on the identity of the atoms bonded to the carbonyl-group carbon

chapter_02_01.ppt

2.2 Alkanes and Alkyl Groups: Isomers

Alkanes: Saturated hydrocarbons

Saturated: they have only C-C and C-H single bonds and thus <u>contain maximum</u> possible number of hydrogens per carbon.


Hydrocarbons: they contain only carbon and hydrogen atoms General formula: C_nH_{2n+2}

Isomers: Compounds which have the same formula but different structures Isomers have the same numbers and kinds of atoms but differ in the way the atoms are arranged.

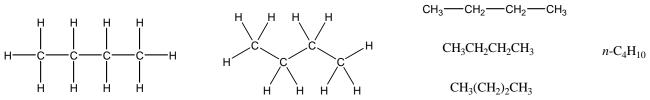

Constitutional isomers:Compounds whose atoms are connected differentlyStraight-chain alkanesbranched-chain alkanes

Butane (normal butane)

Isobutane (2-methylpropane)

Pentane

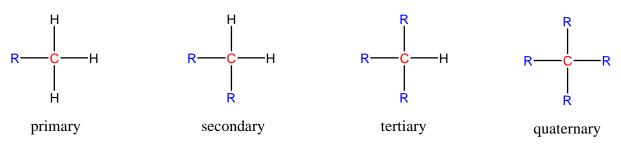
(2-methylbutane)


Isopentane

Neopentane (2,2-dimethylpropane)

Representation of alkanes:

e.g. Butane


Naming the straight-chain alkanes:

Name according to the number of carbon atoms they contain based on Greek number with the exception of the first four compounds (metha-, etha-, propa-, buta-). Add –ane to the end of each name.

Alkyl group (R): The functional group in which a hydrogen atom is removed from an alkane.

Naming: replace the -ane ending with -yl ending.

The prefixes – primary (1°), sec (secondary, 2°), tert (tertiary, 3°), and quat (quaternary, 4°) – refer to the number of other carbon atoms attached to the branched carbon atom.

2.3 Naming Branched-Chain Alkanes

IUPAC (International Union of Pure and Applied Chemistry) system of nomenclature

Prefix Parent Suffix
Where are the substituents? What family? (functional group)
(location of substituents)
How many carbons?

Four steps in naming branched-chain alkanes

Step 1. Find the parent hydrocarbon.

(a) Find **the longest continuous carbon chain** in the molecule and use the name of that chain as the parent name.

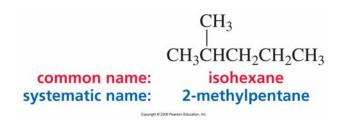
3-Methylhexane

(b) If two chains of equal length are present, <u>choose the one with the larger</u> <u>number of branch points as the parent</u>.

3-Ethyl-2-methylhexane

3-Isopropylhexane

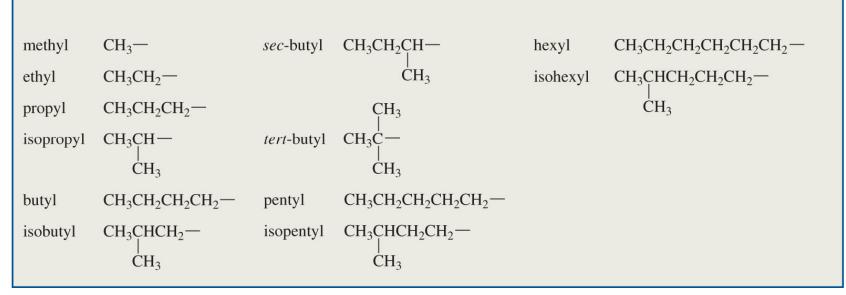
Step 2. Number the atoms in the main chain.

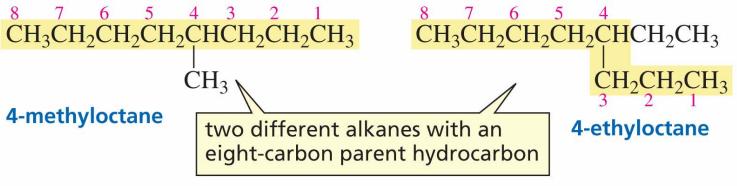

Beginning at the end nearer the first branch point, number each carbon atom in the parent chain

Step 3. Identify and number the substituents.

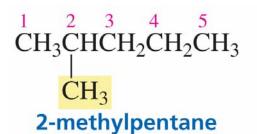
Assign a number to each substituent according to its point of attachment on the parent chain.

Step 4. Write the name as a single word.


Use hyphens to separate the various prefixes and **commas** to separate numbers. If two or more different side chains are present, cite them **in alphabetical order**. If two or more identical side chains are present, use one of the prefixes di-, tri-, tetra-, and so on (don't use these prefixes for alphabetizing).


Number of carbons	Molecular formula	Name	Condensed structure	Boiling point (°C)	Melting point (°C)	Density ^a (g/mL)
1	CH_4	methane	CH ₄	-167.7	-182.5	
2	C_2H_6	ethane	CH ₃ CH ₃	-88.6	-183.3	
3	C_3H_8	propane	CH ₃ CH ₂ CH ₃	-42.1	-187.7	0.5005
4	$C_{4}H_{10}$	butane	CH ₃ CH ₂ CH ₂ H ₃	-0.5	-138.3	0.5787
5	$C_{5}H_{12}$	pentane	CH ₃ (CH ₂) ₃ CH ₃	36.1	-129.8	0.5572
6	$C_{6}H_{14}$	hexane	CH ₃ (CH ₂) ₄ CH ₃	68.7	-95.3	0.6603
7	$C_{7}H_{16}$	heptane	CH ₃ (CH ₂) ₅ CH ₃	98.4	-90.6	0.6837
8	$C_{8}H_{18}$	octane	CH ₃ (CH ₂) ₆ CH ₃	125.7	-56.8	0.7026
9	C_9H_{20}	nonane	CH ₃ (CH ₂) ₇ CH ₃	150.8	-53.5	0.7177
10	$C_{10}H_{22}$	decane	CH ₃ (CH ₂) ₈ CH ₃	174.0	-29.7	0.7299

Copyright © 2006 Pearson Education, Inc.


Table 3.2 Names of Some Alkyl Groups

Copyright © 2006 Pearson Education, Inc.

Copyright © 2006 Pearson Education, Inc.

6 5 4 3 2 CH₂CH₃ 3-ethylhexane

Copyright @ 2006 Pearson Education, Inc

CH₃CH₂CHCH₂CHCH₂CH₂CH₂CH₃ CH₂CH₃ CH_3 5-ethyl-3-methyloctane not 4-ethyl-6-methyloctane because 3 < 4

CH₃CH₂CHCH₂CHCH₃ ĊH₃ CH₃ 2,4-dimethylhexane

CH₂CH₃ CH₃CH₂CCH₂CH₂CHCH₃ ĊH₃ CH₃ 5-ethyl-2,5-dimethylheptane

CH₂CH₃ CH₃ CH₃CH₂CCH₂CH₂CHCHCH₂CH₂CH₂CH₃ CH₂CH₃ CH₂CH₃ 3,3,6-triethyl-7-methyldecane

CH₃ CH₃CH₂CH₂CHCH₂CHCH₂CHCH₃ CH₃CHCH₃ 5-isopropyl-2-methyloctane

Copyright © 2006 Pearson Education, Inc.

2.4 Properties of Alkanes

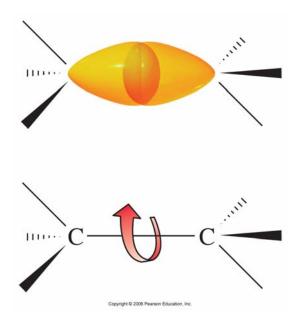
Regardless of the molecule, the average C-C bond parameters are nearly the same in all alkanes, with bond lengths of 154±1 pm and bond strengths of 355±20 kJ/mol (85±5 kcal/mol).

C-H bond parameters are also nearly constant at 109±1 pm and 400±20 kJ/mol (95±5 kcal/mol).

Alkanes show regular increases in both boiling point and melting point as molecular weight increases. They can be separated by fractional distillation.

Combustion

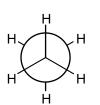
The reaction of an alkane with O_2 to produce CO_2 , H_2O , and a large amount of heat. $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O + 890 \text{ kJ/mol} (213 \text{ kcal/mol})$


Halogenation

The reaction of an alkane with Cl₂ occurs when a mixture of the two is irradiated with ultraviolet light

 $CH_4 + Cl_2 \xrightarrow{hv} CH_3Cl + HCl$ $hv \longrightarrow CH_2Cl_2 + HCl etc.$

2.5 Conformations of Ethanes


C-C bonds in alkanes result from σ overlap of two tetrahedrally oriented sp³ orbitals. <u>The different arrangements of atoms that result from rotation around a single bond</u> are called **conformations** - the spatial relationship between the hydrogens on one carbon and the hydrogens on the other.

Representation of different conformations

1. **Sawhorse** representations

2. Newman projection

C-C bond rotation in ethane

There is a slight (12 kJ/mol; 2.9 kcal/mol) <u>energy barrier to rotation</u> and some conformations are more stable than others

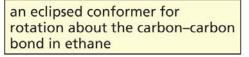
The lowest-energy, most stable conformation is the one in which all six C-H bonds are as far away from one another as possible – **Staggered conformation**.

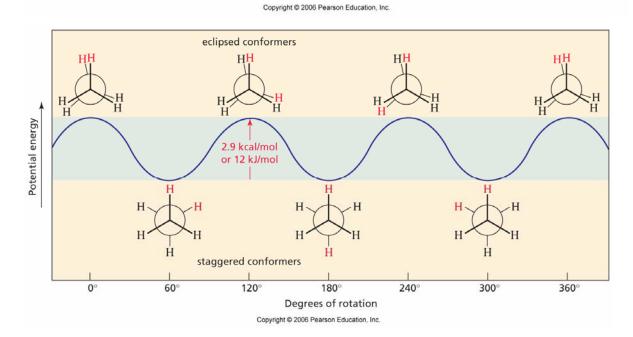
The highest-energy, least stable conformation is the one in which the six C-H bonds are as close as possible – **Eclipsed conformation**.

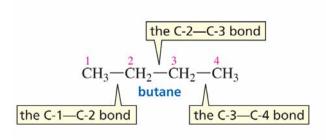
99% of ethane molecules have staggered conformation, and 1% eclipsed conformation.

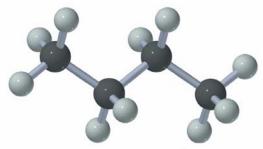
Staggered Conformation

Eclipsed Conformation

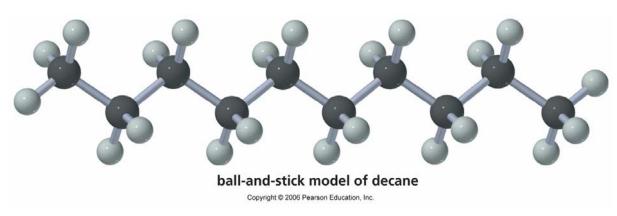







a staggered conformer for rotation about the carbon–carbon bond in ethane

Butane



ball-and-stick model of butane

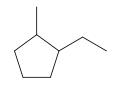
Decane

2.6 Cycloalkanes

General Formula: (CH₂)_n or C_nH_{2n}

Naming cycloalkanes

Step 1: Count the number of carbon atoms in the ring, and add the prefix **cyclo** to the name of the corresponding alkane



Step 2: For substituted cycloalkanes, start at a point of attachment and number around the ring following the alphabetical priority rule.

methylcyclopentane

ethylcyclohexane

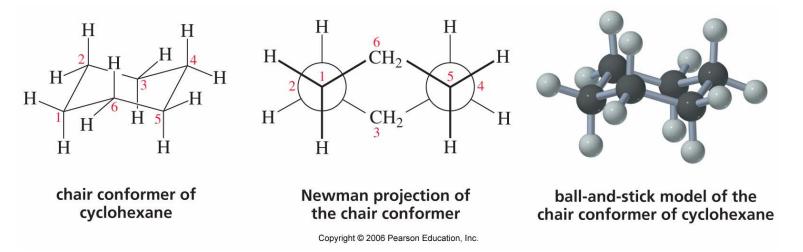
1-Ethyl-2-methylcyclopentane

2.7 Conformations of Some Cycloalkanes

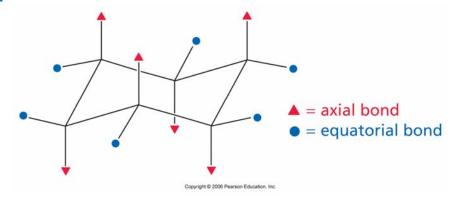
Cyclopropane

Cyclopropane is geometrically constrained to be rigid, planar, and Symmetrical molecule with C-C-C bond angles of 60°. The deviation from the normal 109.5° tetrahedral angle causes an **angle strain** in the molecule that raises its energy and makes it more reactive than unstrained alkanes.

Cyclobutane

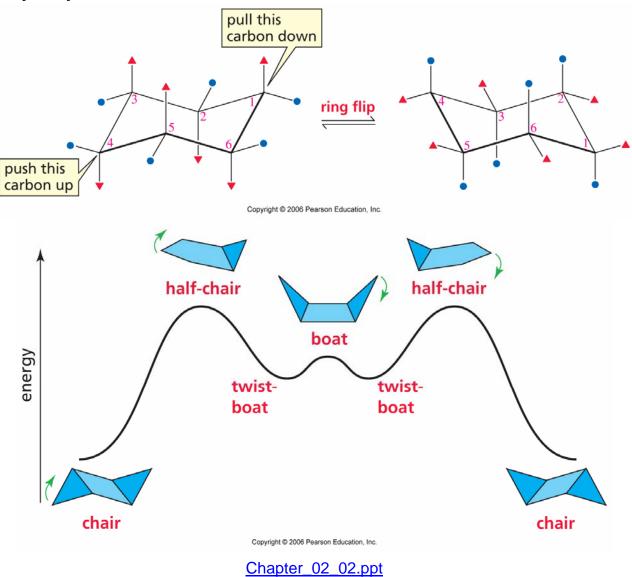


Cyclopentane

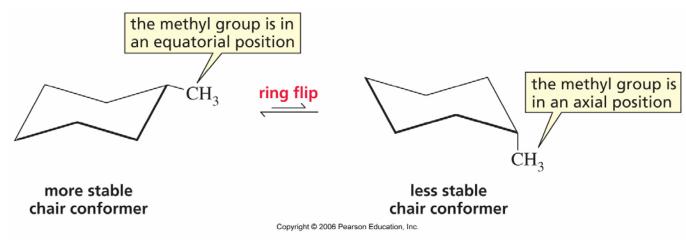


Cyclobutane and cyclopentane are slightly **<u>puckered</u>** rather than flat, which makes the C-C-C bond angles a bit smaller than they would otherwise be and <u>increases the</u> <u>angle strain</u>. The <u>puckering relieves the eclipsing interactions</u> of adjacent C-H bonds that would occur if the rings were flat.

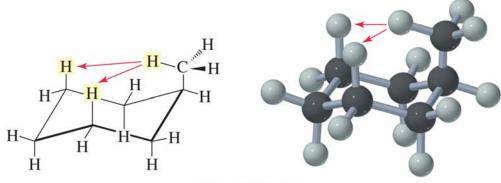
2.8 Cyclohexane



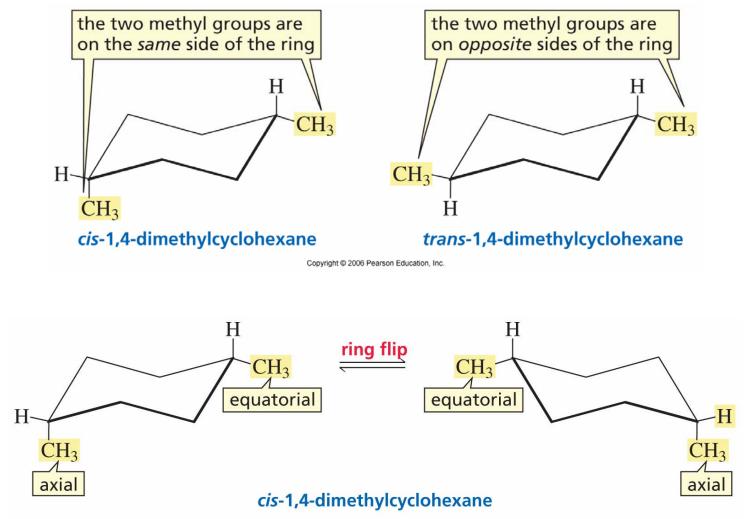
Cyclohexane is not flat. It is **puckered** into <u>a strain-free</u>, three-dimensional shape called a **chair conformation**, in which the C-C-C bond angles are close to the ideal 109.5° tetrahedral value. In addition to being free of angle strain, chair cyclohexane is also <u>free</u> of all C-H eclipsing interactions.

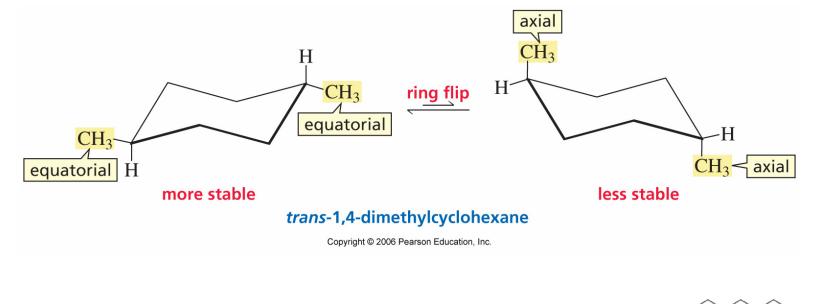


The six axial C-H bonds are parallel to the ring axis, and the six equatorial C-H bonds are in a band around the ring equator.


Conformational Mobility of Cyclohexene

Ring-flip: Interconversion of chair conformations


The conformation of the equatorial methyl is more stable than that of the axial methyl by **7.6 kJ/mol (1.8 kcal/mol)**, meaning that about 95% of methylcyclohexane molecules have their methyl group equatorial at any given instant. This is because of the unfavorable **steric interaction** that occurs in the axial conformation between the methyl group and the two axial hydrogen atoms (**1,3-diaxial interaction**).


Copyright © 2006 Pearson Education, Inc.

A substituent is always more stable in an equatorial position than in an axial position. Chapter 02 03.ppt

"Cis" and "Trans" Nomenclature in Cycloalkanes

Copyright © 2006 Pearson Education, Inc.

- Title: Structures of Cholesterol Reducing Drugs
- Caption: Structures of lovastatin, simvastatin, atorvastatin.
- Notes: These drugs are used to lower the amount of cholesterol in the body.